Tag Archives: performance

What Is Software as a Service or SaaS Technology?

Interest in SaaS technology (Software as a Service) has skyrocketed in recent years. If you are wondering, “what is Software as a Service (SaaS) technology?” and how it can improve the service you offer your clients, you will find this article helpful.

Why is SaaS so popular? Prior to SaaS, only traditional software applications were available to the Performance Improvement industry.

Wikipedia defines Software as a service (SaaS, typically pronounced [sæs]) as “sometimes referred to as “on-demand software,” is a software delivery model in which software and its associated data are hosted centrally (typically in the (Internet) cloud) and are typically accessed by users using a thin client, normally using a web browser over the Internet.”

Many large Performance companies have made the decision to migrate their client solution to SaaS technology because it is much more affordable than traditional software to maintain plus it is far faster to implement. In addition client solutions can in most cases be fully managed by the end customer as well.

Gen X and Y employees are demanding more hands-on access to self-manage their companies programs and this trend is just beginning. For these managers only a true SaaS solution delivers a completely user friendly solution and of equal importance if the on-going enhancements and product updates that SaaS software providers can deliver. It’s the norm to see new product enhancements being released every 8-weeks and these enhancement often see completely new modules, tools and enhancements that improve the user experience.

SaaS technology has removed the need for Performance improvement companies to build and maintain large IT departments because with a SaaS solution there are limited IT support requirements internally since SaaS solutions are generally launch ready and come with a full IT support team. In addition SaaS makes it fast and easy to deploy new upgrades and most solution providers deliver a steady flow of new and exciting features and upgrades as part of their IT development roadmap.

SaaS technology offers Performance improvement companies the ability to offer a secure, affordable, scalable and easily accessible method to deliver employee recognition, performance, loyalty, training and even global reward management solutions; all on a global scale.

Once an organization has adopted SaaS into their workflow, it is seamless for the performance improvement company to add new features and enhancements to their client’s application. The process of activating a new module or application is for the most simply a click of a button and once a new module is activated this opens up new sources of revenues for the solution providers.

Companies stand to reap massive rewards by incorporating SaaS solutions into their offerings. SaaS technology offers so many great benefits and has become a staple in the IT industry as a whole for one reason – SaaS streamlines and simplifies the delivery of technology making it accessible to the widest audience possible. Performance improvement companies who do not offer SaaS solutions are less competitive simply because most enterprise level organizations are already using or considering using SaaS technology.

In the words of Martin Henry Fischer – “Knowledge is a process of piling up facts; wisdom lies in their simplification” and nothing speaks volumes like simplicity to your customers.

The Truth about RAID Technology

RAID – Redundant Array of Inexpensive (or sometimes “Independent”) Disks – is a method of combining several hard drives into one logical unit. It can offer fault tolerance and higher throughput levels than a single hard drive or group of independent hard drives.

RAID is a mature technology that speeds up data access while at the same time protecting your data from hard disk failure. RAID is quickly becoming a necessary component in every network since data loss and downtime can prove both fatal and financially destructive. Most networks are designed to provide instant access to massive amounts of data. More and more employees have to access customer and other databases. Intranets and corporate Web sites provide access to huge databases online.
RAID provides increased storage capacities, and protects your important data from hard drive failure.
RAID Levels:
RAID 0
RAID 1
RAID 3
RAID 5
RAID 10
There are multiple benefits of using RAID:
Reliability
Scalability
Real-time data recovery with uninterrupted access when a hard drive fails
System uptime and network availability
Protection against data loss
multiple drives working in parallel increase system performance
A disk system with RAID capability can protect its data and provide on-line, immediate access to its data, despite a single disk failure (some RAID storage systems can withstand two concurrent disk failures). RAID capability also provides for the on-line reconstruction of the contents of a failed disk to a replacement disk.
RAID offers faster hard drive performance and nearly complete data safety. Storage requirements are expanding as file sizes get bigger and rendering needs get more complex. If you handle very large images or work on audio and video files, faster data throughput means enhanced productivity. RAID can be backed up to tape while the system is in use.
There are 5 most commonly used RAID levels. These levels are not ratings, but rather classifications of functionality. Different RAID levels offer dramatic differences in performance, data availability and data integrity depending on the specific I/O environment. There is no single RAID level that is perfect for all users.
Storage Requirements can be calculated through RAID Calculator.

RAID 0: STRIPING
RAID 0 refers to striping data across multiple disks without any redundant information. Data is divided into blocks and distributed sequentially among the disks. This level is also referred to as pure striping. The number of disk drives needed to create a RAID 0 is one or more. In other words, a single drive can be configured as a RAID 0 array. This type of array can be used to enhance performance in either a request rate intensive or transfer rate intensive environment. Unfortunately, striping reduces the level of data availability since a disk failure will cause the entire array to be inaccessible.

RAID 0 was not defined originally but has become a commonly used term.

Advantages:
Easy to Implement
No capacity loss – all storage is usable

Disadvantages:
Not a “true” RAID due to the lack of fault-tolerance
Failure of only one disk will result in loss of all data on the array
RAID 1: MIRRORING / DUPLEXING
RAID 1 is the first defined level that allows a measure of data redundancy. Data written to one disk drive is simultaneously written to another disk drive. If one disk fails, the other disk can be used to run the system and reconstruct the failed disk. Since the disk is mirrored, it does not matter if one of them fails because both disks contain the same data at all times.
RAID level 1 provides high data availability since two complete copies of all information are maintained. In addition, read performance may be enhanced if the array controller allows simultaneous reads from both members of a mirrored pair. Higher availability will be achieved if both disks in a mirror pair are on separate I/O busses, known as duplexing.

Advantages:
Higher read performance than a single disk

Disadvantages:
Requires twice the desired disk space
RAID 3: SRTIPING AND PARITY
In RAID 3, data is striped across a set of disks. In addition, parity is generated and stored on a dedicated disk. With RAID 3, data chunks are much smaller than the average I/O size and the disk spindles are synchronized to enhance throughput in transfer rate intensive environments. RAID 3 is well suited for CAD/CAM or imaging type applications as well as streaming media. Since parity is used, a RAID 3 stripe set can withstand a single disk failure without losing data or access to data.
Advantages:
Good data availability
High performance for transfer rate intensive applications
Cost effective – only 1 extra disk is required for parity

Disadvantages:
Poor random I/O performance
Disk failure has a significant impact on performance
RAID 5: SRTIPING AND PARITY
RAID 5, similar to level 3, stripes data and parity to generate redundancy. However, instead of requiring entirely new disk for parity storage, the parity is distributed through the stripe of the disk array.
In RAID 5 both parity and data are striped across a set of separate disks. Next, the new parity is calculated. Finally, the new data and parity are written to separate disks. Data chunks are much larger than the average I/O size, but are still resizable. Disks are able to satisfy requests independently which provides high read performance in a request rate intensive environment. Since parity information is used, a RAID 5 stripe can withstand a single disk failure without losing data or access to data.

Advantages:
Highest read data transaction rates
Cost effective – only 1 extra disk is required

Disadvantages:
Individual block data transfer rate same as a single disk.
RAID 10
RAID 10 is technically (RAID 1 + RAID 0), a combination of RAID 1 and 0 – mirroring and striping, but without parity. RAID 10 is a stripe across a number of mirrored drives. It is implemented as a striped array whose segments are RAID 1 arrays. RAID 10 has the same fault tolerance as RAID level 1, as well as the same overhead for fault-tolerance as mirroring alone.

Advantages:
Very high I/O rates are achieved by striping RAID 1 segments
Excellent solution for sites that would normally use RAID 1
Great for Oracle and other databases which need high performance and fault tolerance.

Disadvantages:
Expensive to maintain
As with Raid 1 total capacity is equal to half of the total capacity of all disk in the array.

The Truth about RAID Technology

RAID – Redundant Array of Inexpensive (or sometimes “Independent”) Disks – is a method of combining several hard drives into one logical unit. It can offer fault tolerance and higher throughput levels than a single hard drive or group of independent hard drives.

RAID is a mature technology that speeds up data access while at the same time protecting your data from hard disk failure. RAID is quickly becoming a necessary component in every network since data loss and downtime can prove both fatal and financially destructive. Most networks are designed to provide instant access to massive amounts of data. More and more employees have to access customer and other databases. Intranets and corporate Web sites provide access to huge databases online.
RAID provides increased storage capacities, and protects your important data from hard drive failure.
RAID Levels:
RAID 0
RAID 1
RAID 3
RAID 5
RAID 10
There are multiple benefits of using RAID:
Reliability
Scalability
Real-time data recovery with uninterrupted access when a hard drive fails
System uptime and network availability
Protection against data loss
multiple drives working in parallel increase system performance
A disk system with RAID capability can protect its data and provide on-line, immediate access to its data, despite a single disk failure (some RAID storage systems can withstand two concurrent disk failures). RAID capability also provides for the on-line reconstruction of the contents of a failed disk to a replacement disk.
RAID offers faster hard drive performance and nearly complete data safety. Storage requirements are expanding as file sizes get bigger and rendering needs get more complex. If you handle very large images or work on audio and video files, faster data throughput means enhanced productivity. RAID can be backed up to tape while the system is in use.
There are 5 most commonly used RAID levels. These levels are not ratings, but rather classifications of functionality. Different RAID levels offer dramatic differences in performance, data availability and data integrity depending on the specific I/O environment. There is no single RAID level that is perfect for all users.
Storage Requirements can be calculated through RAID Calculator.

RAID 0: STRIPING
RAID 0 refers to striping data across multiple disks without any redundant information. Data is divided into blocks and distributed sequentially among the disks. This level is also referred to as pure striping. The number of disk drives needed to create a RAID 0 is one or more. In other words, a single drive can be configured as a RAID 0 array. This type of array can be used to enhance performance in either a request rate intensive or transfer rate intensive environment. Unfortunately, striping reduces the level of data availability since a disk failure will cause the entire array to be inaccessible.

RAID 0 was not defined originally but has become a commonly used term.

Advantages:
Easy to Implement
No capacity loss – all storage is usable

Disadvantages:
Not a “true” RAID due to the lack of fault-tolerance
Failure of only one disk will result in loss of all data on the array
RAID 1: MIRRORING / DUPLEXING
RAID 1 is the first defined level that allows a measure of data redundancy. Data written to one disk drive is simultaneously written to another disk drive. If one disk fails, the other disk can be used to run the system and reconstruct the failed disk. Since the disk is mirrored, it does not matter if one of them fails because both disks contain the same data at all times.
RAID level 1 provides high data availability since two complete copies of all information are maintained. In addition, read performance may be enhanced if the array controller allows simultaneous reads from both members of a mirrored pair. Higher availability will be achieved if both disks in a mirror pair are on separate I/O busses, known as duplexing.

Advantages:
Higher read performance than a single disk

Disadvantages:
Requires twice the desired disk space
RAID 3: SRTIPING AND PARITY
In RAID 3, data is striped across a set of disks. In addition, parity is generated and stored on a dedicated disk. With RAID 3, data chunks are much smaller than the average I/O size and the disk spindles are synchronized to enhance throughput in transfer rate intensive environments. RAID 3 is well suited for CAD/CAM or imaging type applications as well as streaming media. Since parity is used, a RAID 3 stripe set can withstand a single disk failure without losing data or access to data.
Advantages:
Good data availability
High performance for transfer rate intensive applications
Cost effective – only 1 extra disk is required for parity

Disadvantages:
Poor random I/O performance
Disk failure has a significant impact on performance
RAID 5: SRTIPING AND PARITY
RAID 5, similar to level 3, stripes data and parity to generate redundancy. However, instead of requiring entirely new disk for parity storage, the parity is distributed through the stripe of the disk array.
In RAID 5 both parity and data are striped across a set of separate disks. Next, the new parity is calculated. Finally, the new data and parity are written to separate disks. Data chunks are much larger than the average I/O size, but are still resizable. Disks are able to satisfy requests independently which provides high read performance in a request rate intensive environment. Since parity information is used, a RAID 5 stripe can withstand a single disk failure without losing data or access to data.

Advantages:
Highest read data transaction rates
Cost effective – only 1 extra disk is required

Disadvantages:
Individual block data transfer rate same as a single disk.
RAID 10
RAID 10 is technically (RAID 1 + RAID 0), a combination of RAID 1 and 0 – mirroring and striping, but without parity. RAID 10 is a stripe across a number of mirrored drives. It is implemented as a striped array whose segments are RAID 1 arrays. RAID 10 has the same fault tolerance as RAID level 1, as well as the same overhead for fault-tolerance as mirroring alone.

Advantages:
Very high I/O rates are achieved by striping RAID 1 segments
Excellent solution for sites that would normally use RAID 1
Great for Oracle and other databases which need high performance and fault tolerance.

Disadvantages:
Expensive to maintain
As with Raid 1 total capacity is equal to half of the total capacity of all disk in the array.