Tag Archives: common

Radio Controlled Helicopters

Radio controlled helicopters (also RC helicopters) are model aircraft which are distinct from RC airplanes because of the differences in construction, aerodynamics, and flight training. Several basic designs of RC helicopters exist, of which some (such as those with collective pitch, meaning blades which rotate on their longitudinal axis to vary or reverse lift) are more maneuverable than others. The more maneuverable designs are often harder to fly, but benefit from greater aerobatic capabilities. Flight controls allow pilots to control the collective and throttle (usually linked together), the cyclic controls (pitch and roll), and the tail rotor (yaw). Controlling these in unison enables the helicopter to perform most of the same maneuvres as full sized helicopters, such as hovering and backwards flight, and many that full sized helicopters cannot.

The various helicopter controls are effected by means of small servo motors, commonly known as servos. A piezoelectric gyroscope is typically used on the tail rotor (yaw) control to counter wind and torque reaction induced tail movement. This gyro does not itself apply a mechanical force, but electronically adjusts the control signal to the tail rotor servo. The engines typically used to be methanol powered two stroke motors, but electric brushless motors combined with a high performance lithium polymer battery (or lipo) are now more common and provide improved efficiency, performance and lifespan compared to brushed motors, while decreasing prices bring them within reach of hobbyists. Gasoline and jet turbine engines are also used.

Common power sources are nitro (nitromethane methanol internal combustion), electric batteries, gas turbines, petrol and gasoline. Mechanical layouts include cyclic/collective pitch mixing (CCPM) in all power sources, fixed pitch electric rotors and coaxial electric rotors. Practical electric helicopters are a recent development but have rapidly developed and become more common, overtaking nitro helicopters in common use. Gas turbine helicopters are also increasing in popularity, although the high cost puts them out of reach of most people.

Nitro or glow fuel helicopters come in different sizes: 15, 30, 50, 60 and 90 size. These numbers originated from the size of engine used in the different models (0.30 cu in, 0.50 cu in and so on). The bigger and more powerful the engine, the larger the main rotor blade that it can turn and hence the bigger the aircraft overall. Typical flight times for nitro helicopters is 7-14 minutes depending on the engine size and tuning. The maximum height of operation for RC helicopters, be it nitro or electric, is only limited to the height at which the controller can see the model. Most radio systems have a range of over a mile, and the person controlling the model will have long lost sight of the model.

Two small electric helicopters emerged in the mid 1990s. These were the Kalt Whisper and the Kyosho EP Concept, flying on 7/8 1200 mah NiCad batteries with brushed motors. However, the 540 brushed sized motors were on the limit of current draw, often 20-25 amps on the `hotter’ motors, hence brush and commutator problems were common. S107 metal series Recent advancements in battery technology are making electric flying more feasible in terms of flying time. Lithium polymer (LiPo) batteries are able to provide the high current required for high performance aerobatics while still remaining very light. Typical flight times are 4-12 minutes depending on the flying style and battery capacity.

Small fixed pitch helicopters need a 4-channel radio (throttle, elevator, aileron, rudder), although micro helicopters that utilize a 2-channel infrared control system also exist; while collective pitch models need a minimum of 5 channels with 6 being most common (throttle, collective pitch, elevator, aileron, rudder and gyro gain). Because of the normal interaction of the various control mechanisms, advanced radios include adjustable mixing functions, such as throttle/collective and throttle/rudder. RC Helicopters usually have at least four controls: Roll Cyclic Pitch, Elevator (Fore Aft Cyclic Pitch), Rudder (Yaw) and Pitch/Throttle (Collective Pitch/Power).

When Using Social Networking Sites Exercise Caution

With more people using social networking sites there is also an increase in the various threats people may encounter online. Unfortunately population masses tend to attract people with less than noble intentions and so is the case with many popular social networking sites. Now the social networking dangers that do exist are not extreme enough to consider your complete withdrawal from these sites. On the other hand your safety on the internet can be compromised if you do not exercise caution.

Here are 3 of the most common threats facing many people involved in online social networking.

Malware

Spammers of all sorts can ‘sniff’ out a crowd online in a short period of time. Many target popular social sites because the ‘fishing’ is good. The offer of interesting content or a helpful download allows these people to ‘deposit’ different types of malware on your computer.

In this case the same rules should apply when involved in any online social activities as it does with your email. Do not open anything from people you do not know or looks suspicious – end of story.

Online Predators

Once again due to the popularity of online social sites part of the crowd it attracts belongs more to the ‘creepy’ element. Although these sites do keep you out of immediate physical contact there are circumstances that could put you at risk. Strangers do not have need for any of your personal information. No matter how many messages you may pass back and forth with someone on one of these sites how well do you really know them? One of the most common social networking dangers is the creeps posing as your friend to get important and private information from you. Be friendly but do not share anything other than what may be reflected in your profile or perhaps casual interests. Quite frankly there is NO reason for someone to know anything other than this.

Remember what we all learned when growing up – do not talk to strangers!

Site Host

Unfortunately it appears that perhaps some of the more popular networking sites are getting a little too liberal with the use of members personal information. Now we will not mention names here but some sites are making ‘subtle’ changes to their ‘policies’ involving member privacy. It is up to each individual to protect themselves insofar as how much information they are willing to give these sites. Read all disclosures carefully and be forthcoming but at the same time particular in what you allow your profile to reflect about you.

With the growing number of people using social networking sites there also is an increase in the number of threats existing at many of these sites. Now many of these social networking dangers are not extreme enough to justify staying completely away however an awareness of them is important. It seems that the most popular social networking sites like facebook or twitter or more prone to attracting this type activity. But the fact of the matter is everybody should be aware of certain precautions they need to take for their own safety on the internet. The 3 most prevalent threats we discussed above can be easily avoided by practicing a little common sense during any online social networking activity. By taking certain precautions as recommended above you will make your online networking experience not only safer but also more enjoyable.

Radio Controlled Helicopters

Radio controlled helicopters (also RC helicopters) are model aircraft which are distinct from RC airplanes because of the differences in construction, aerodynamics, and flight training. Several basic designs of RC helicopters exist, of which some (such as those with collective pitch, meaning blades which rotate on their longitudinal axis to vary or reverse lift) are more maneuverable than others. The more maneuverable designs are often harder to fly, but benefit from greater aerobatic capabilities. Flight controls allow pilots to control the collective and throttle (usually linked together), the cyclic controls (pitch and roll), and the tail rotor (yaw). Controlling these in unison enables the helicopter to perform most of the same maneuvres as full sized helicopters, such as hovering and backwards flight, and many that full sized helicopters cannot.

The various helicopter controls are effected by means of small servo motors, commonly known as servos. A piezoelectric gyroscope is typically used on the tail rotor (yaw) control to counter wind and torque reaction induced tail movement. This gyro does not itself apply a mechanical force, but electronically adjusts the control signal to the tail rotor servo. The engines typically used to be methanol powered two stroke motors, but electric brushless motors combined with a high performance lithium polymer battery (or lipo) are now more common and provide improved efficiency, performance and lifespan compared to brushed motors, while decreasing prices bring them within reach of hobbyists. Gasoline and jet turbine engines are also used.

Common power sources are nitro (nitromethane methanol internal combustion), electric batteries, gas turbines, petrol and gasoline. Mechanical layouts include cyclic/collective pitch mixing (CCPM) in all power sources, fixed pitch electric rotors and coaxial electric rotors. Practical electric helicopters are a recent development but have rapidly developed and become more common, overtaking nitro helicopters in common use. Gas turbine helicopters are also increasing in popularity, although the high cost puts them out of reach of most people.

Nitro or glow fuel helicopters come in different sizes: 15, 30, 50, 60 and 90 size. These numbers originated from the size of engine used in the different models (0.30 cu in, 0.50 cu in and so on). The bigger and more powerful the engine, the larger the main rotor blade that it can turn and hence the bigger the aircraft overall. Typical flight times for nitro helicopters is 7-14 minutes depending on the engine size and tuning. The maximum height of operation for RC helicopters, be it nitro or electric, is only limited to the height at which the controller can see the model. Most radio systems have a range of over a mile, and the person controlling the model will have long lost sight of the model.

Two small electric helicopters emerged in the mid 1990s. These were the Kalt Whisper and the Kyosho EP Concept, flying on 7/8 1200 mah NiCad batteries with brushed motors. However, the 540 brushed sized motors were on the limit of current draw, often 20-25 amps on the `hotter’ motors, hence brush and commutator problems were common. S107 metal series Recent advancements in battery technology are making electric flying more feasible in terms of flying time. Lithium polymer (LiPo) batteries are able to provide the high current required for high performance aerobatics while still remaining very light. Typical flight times are 4-12 minutes depending on the flying style and battery capacity.

Small fixed pitch helicopters need a 4-channel radio (throttle, elevator, aileron, rudder), although micro helicopters that utilize a 2-channel infrared control system also exist; while collective pitch models need a minimum of 5 channels with 6 being most common (throttle, collective pitch, elevator, aileron, rudder and gyro gain). Because of the normal interaction of the various control mechanisms, advanced radios include adjustable mixing functions, such as throttle/collective and throttle/rudder. RC Helicopters usually have at least four controls: Roll Cyclic Pitch, Elevator (Fore Aft Cyclic Pitch), Rudder (Yaw) and Pitch/Throttle (Collective Pitch/Power).