Tag Archives: changes
Website Optimization And SEO Consulting Changes To Rank Better In 2012
The New Year is fast approaching and it is this time of the year when most people make resolutions to make changes in their lives. That makes it a perfect time to think about your website and the changes it may need to compete with all the other businesses in this fast paced world.
If over the last year you have begun to see a decrease in views to your website and a drop in business, quite possibly this is because your website has not kept with the changing trends in search engines that began with Google Panda and now includes a growing reliance in social media chatter to decide what web pages should rank high and which ones lack exceeding low.
It used to be that website optimization was as simple as finding out what keywords were trending and using those keywords in your web pages. For outside links you simply needed to write an article to post somewhere else that linked back to the website and would bring in thousands of new visitors. Those things have now changed making it much more difficult to gain those Google rankings than ever before.
Website Optimization No Longer Is Dependent On Keywords
While using some keywords to get your web pages noticed by Google search engine is still important it is less important than it once was. Adding new and useful content that people find actually helpful is now a must with keyword density dropping to ½ or 1/3 of what it once was. In addition, it is more difficult to create back links as well because the search engines demand new and original content. The content farms have all gone or changed in order to meet Google’s changing demands.
In addition, with more people using Social media like Twitter and Facebook for business these days, search engines rely on these sites for back links to website looking for not only the frequency that your website is mentioned but also at who is mentioning your website.
What this all means is that your website needs to be updated to make the most of SEO and get you a better ranking in 2012. One way of ensuring that your website is optimized to rank better in 2012 is to hire a website consulting firm that has followed and understands the changes made to the search engine ranking and can help you to institute the changes your website needs to climb up those search engine ranks where it belongs.
If your business depends on your website to bring in customers and your site needs to be seen in order to perform that very important function it’s time to do some changes. The higher your web pages climb in search engine ranking the more notice your website will get, and the more business you will generate. So, now is the time to find that great SEO consulting firm that will be able to make the website optimization changes you need to get you better search engine ranking in 2012.
Benefits of Using RTD Sensors in Industrial Applications
RTDs (resistance temperature detectors) are one of the most common temperature sensor types used in industrial applications. Thermocouples and thermistors are popular temperature sensors as well, but RTD sensors are more accurate over a wide temperature range and more stable over time, making them an excellent choice for many applications.
An RTD sensor is essentially a resistor whose resistance value increases with temperature. Due to the predictable change in resistance of certain materials as temperature changes, it is possible to acquire highly accurate and consistent temperature measurements. Most RTD sensors have a response time between 0.5 to 5 seconds or more. RTD sensors can be constructed with pure platinum, nickel or copper. RTDs made with platinum are also known as PRTs (platinum resistance thermometer) and are the most frequently used given their higher temperature capabilities, stability and repeatability.
Specifications for RTD sensors include a base resistance value and a temperature coefficient of resistance (TCR) value. Typical base resistance values can range from 10 to several thousands of Ohms (& 937;) depending on material and type. The base resistance value indicates the nominal resistance of the sensor at 0°C (nickel and platinum) or 25°C (copper), with 100& 937; being the most common.
The temperature coefficient of resistance does not affect a sensor’s accuracy, but is important to the measuring device that calculates changes in temperature based on the base resistance. PRTs have two standards of TCRs; the European standard (IEC 751) requires a TCR of 0.00385& 937;/& 937;/°C; and the American standard requires a TCR of 0.00392& 937;/& 937;/°C. Assuming a TCR of 0.00385& 937;/& 937;/°C meaning that for every degree change in temperature, the resistance increases by 0.385& 937; a 100& 937; PRT’s resistance will be 138.5& 937; at 100°C. Likewise, assuming a TCR of 0.00392 & 937;/& 937;/°C will result in a resistance of 139.2& 937; at 100°C. Thus, the measuring device used needs to be attuned to the TCR of an RTD sensor in order to accurately report changes in temperature, but the difference in TCR value has no impact on the sensor itself.
Thermocouples and thermistors are some of the other popular temperature sensors used in industrial applications. Thermocouples basically convert thermal energy into electrical energy, and use that to measure the temperature. While thermocouples measure the highest temperatures, respond quickly to temperature changeswithin fractions of a secondand are easily obtainable at low cost, they are the least stable and repeatable, and suffer from poor accuracy. Thermistors are semiconductors that present a non-linear change in resistance as temperature changes; unlike an RTD, the resistance in a thermistor decreases as temperature increases. In comparison, thermistors feature high sensitivity to small temperature changes and become more stable with use, but are fragile, have a limited temperature range and currently lack standardization.
Between the three types of temperature sensors, RTD sensors are the most accurate and stable over time, and are resistant to contamination under 660°C. They also boast high repeatability, which means that RTDs can accurately measure identical temperatures even when exposed to repeated heating and cooling cycles with minimal discrepancies. This means that an RTD sensor will consistently measure 100°C after being put into an oven and subsequently a freezer multiple times. In contrast, a thermocouple is more likely to measure 100°C, then 98°C, then 103°C and so on when placed in the same situation. Since most applications do not require immediate responses (less than 0.5 to 5 seconds) to temperature changes, RTDs are an ideal solution for many industrial applications, which Network Technologies Inc (NTI) includes in its product line of ENVIROMUX® Enterprise Environment Monitoring Systems and Accessories.
NTI offers a line of platinum 100& 937; RTD sensors that can be used in conjunction with one of three available transmitters to accurately monitor temperatures in many industrial applications. The temperature ranges of the available RTDs are: -67 to 240°F (-55 to 115°C), accurate to within ±0.27°F (±0.15°C); 35°F to 140°F (2°C to 60°C), accurate to within ±0.6°F (±0.33°C); and -30°F to 230°F (-34°C to 110°C), accurate to within ±0.6°F (±0.33°C). Rugged, waterproof RTD sensors are available for harsh environments. Some of the common installations for the RTD sensors include: plenum mounting, duct mounting, immersion wells, direct mounting onto sheet metal duct systems, remote temperature sensing for building automation systems and mechanical equipment room instrumentation.
Transmitters are necessary to convert the resistor values into temperature values, and can be connected to NTI’s Enterprise Environment Monitoring Systems for a variety of alert and logging functions. The ENVIROMUX-RTDT-x 100& 937; Platinum RTD Transmitter is available in two ranges, -20 to 140°F (-28 to 60°C) and 30 to 240°F (-1 to 115°C), and is accurate to within ±0.8°F (±0.45°C). Both units support 2-wire connections and can be calibrated for higher accuracy. With a wider temperature range of -328 to 1562°F (-200 to 850°C), the ENVIROMUX-RTDT-1562 High-Accuracy Platinum RTD Transmitter is accurate to within ±0.2°F (±0.1°C). It supports 2, 3, or 4-wire connections and is configurable to support 100& 937; platinum, 120& 937; nickel or 10& 937; copper RTD sensors. With RS485 signal output, the transmitter boasts precise temperature measurements.
When combining the RTD sensors and transmitters with NTI’s ENVIROMUX Enterprise Environment Monitoring Systems, companies not only can accurately monitor temperature, but they also can monitor a wide range of other environmental threats such as humidity, liquid water presence, power, intrusion and smoke, and receive alert notifications when a sensor goes out of a configurable threshold an ideal preventive measure for many industrial applications.
Benefits of Using RTD Sensors in Industrial Applications
RTDs (resistance temperature detectors) are one of the most common temperature sensor types used in industrial applications. Thermocouples and thermistors are popular temperature sensors as well, but RTD sensors are more accurate over a wide temperature range and more stable over time, making them an excellent choice for many applications.
An RTD sensor is essentially a resistor whose resistance value increases with temperature. Due to the predictable change in resistance of certain materials as temperature changes, it is possible to acquire highly accurate and consistent temperature measurements. Most RTD sensors have a response time between 0.5 to 5 seconds or more. RTD sensors can be constructed with pure platinum, nickel or copper. RTDs made with platinum are also known as PRTs (platinum resistance thermometer) and are the most frequently used given their higher temperature capabilities, stability and repeatability.
Specifications for RTD sensors include a base resistance value and a temperature coefficient of resistance (TCR) value. Typical base resistance values can range from 10 to several thousands of Ohms (& 937;) depending on material and type. The base resistance value indicates the nominal resistance of the sensor at 0°C (nickel and platinum) or 25°C (copper), with 100& 937; being the most common.
The temperature coefficient of resistance does not affect a sensor’s accuracy, but is important to the measuring device that calculates changes in temperature based on the base resistance. PRTs have two standards of TCRs; the European standard (IEC 751) requires a TCR of 0.00385& 937;/& 937;/°C; and the American standard requires a TCR of 0.00392& 937;/& 937;/°C. Assuming a TCR of 0.00385& 937;/& 937;/°C meaning that for every degree change in temperature, the resistance increases by 0.385& 937; a 100& 937; PRT’s resistance will be 138.5& 937; at 100°C. Likewise, assuming a TCR of 0.00392 & 937;/& 937;/°C will result in a resistance of 139.2& 937; at 100°C. Thus, the measuring device used needs to be attuned to the TCR of an RTD sensor in order to accurately report changes in temperature, but the difference in TCR value has no impact on the sensor itself.
Thermocouples and thermistors are some of the other popular temperature sensors used in industrial applications. Thermocouples basically convert thermal energy into electrical energy, and use that to measure the temperature. While thermocouples measure the highest temperatures, respond quickly to temperature changeswithin fractions of a secondand are easily obtainable at low cost, they are the least stable and repeatable, and suffer from poor accuracy. Thermistors are semiconductors that present a non-linear change in resistance as temperature changes; unlike an RTD, the resistance in a thermistor decreases as temperature increases. In comparison, thermistors feature high sensitivity to small temperature changes and become more stable with use, but are fragile, have a limited temperature range and currently lack standardization.
Between the three types of temperature sensors, RTD sensors are the most accurate and stable over time, and are resistant to contamination under 660°C. They also boast high repeatability, which means that RTDs can accurately measure identical temperatures even when exposed to repeated heating and cooling cycles with minimal discrepancies. This means that an RTD sensor will consistently measure 100°C after being put into an oven and subsequently a freezer multiple times. In contrast, a thermocouple is more likely to measure 100°C, then 98°C, then 103°C and so on when placed in the same situation. Since most applications do not require immediate responses (less than 0.5 to 5 seconds) to temperature changes, RTDs are an ideal solution for many industrial applications, which Network Technologies Inc (NTI) includes in its product line of ENVIROMUX® Enterprise Environment Monitoring Systems and Accessories.
NTI offers a line of platinum 100& 937; RTD sensors that can be used in conjunction with one of three available transmitters to accurately monitor temperatures in many industrial applications. The temperature ranges of the available RTDs are: -67 to 240°F (-55 to 115°C), accurate to within ±0.27°F (±0.15°C); 35°F to 140°F (2°C to 60°C), accurate to within ±0.6°F (±0.33°C); and -30°F to 230°F (-34°C to 110°C), accurate to within ±0.6°F (±0.33°C). Rugged, waterproof RTD sensors are available for harsh environments. Some of the common installations for the RTD sensors include: plenum mounting, duct mounting, immersion wells, direct mounting onto sheet metal duct systems, remote temperature sensing for building automation systems and mechanical equipment room instrumentation.
Transmitters are necessary to convert the resistor values into temperature values, and can be connected to NTI’s Enterprise Environment Monitoring Systems for a variety of alert and logging functions. The ENVIROMUX-RTDT-x 100& 937; Platinum RTD Transmitter is available in two ranges, -20 to 140°F (-28 to 60°C) and 30 to 240°F (-1 to 115°C), and is accurate to within ±0.8°F (±0.45°C). Both units support 2-wire connections and can be calibrated for higher accuracy. With a wider temperature range of -328 to 1562°F (-200 to 850°C), the ENVIROMUX-RTDT-1562 High-Accuracy Platinum RTD Transmitter is accurate to within ±0.2°F (±0.1°C). It supports 2, 3, or 4-wire connections and is configurable to support 100& 937; platinum, 120& 937; nickel or 10& 937; copper RTD sensors. With RS485 signal output, the transmitter boasts precise temperature measurements.
When combining the RTD sensors and transmitters with NTI’s ENVIROMUX Enterprise Environment Monitoring Systems, companies not only can accurately monitor temperature, but they also can monitor a wide range of other environmental threats such as humidity, liquid water presence, power, intrusion and smoke, and receive alert notifications when a sensor goes out of a configurable threshold an ideal preventive measure for many industrial applications.